Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 517
1.
J Phys Chem Lett ; : 5359-5365, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728665

Lithium ruthenium oxide (Li2RuO3) is an archetypal lithium rich cathode material (LRCM) with both cation and anion redox reactions (ARRs). Commonly, the instability of oxygen redox activities has been regarded as the root cause of its performance degradation in long-term operation. However, we find that not triggering ARRs does not improve and even worsens its cyclability due to the detrimental strain accumulation induced by Ru redox activities. To solve this problem, we demonstrate that F-doping in Li2RuO3 can alter its preferential orientation and buffer interlayer repulsion upon Ru redox, both of which can mitigate the strain accumulation along the c-axis and improve its structural stability. This work highlights the importance of optimizing cation redox reactions in LRCMs and provides a new perspective for their rational design.

2.
Clin Exp Med ; 24(1): 99, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748269

Current clinical guidelines limit surgical intervention to patients with cT1-2N0M0 small cell lung cancer (SCLC). Our objective was to reassess the role of surgery in SCLC management, and explore novel prognostic indicators for surgically resected SCLC. We reviewed all patients diagnosed with SCLC from January 2011 to April 2021 in our institution. Survival analysis was conducted using the Kaplan-Meier method, and independent prognostic factors were assessed through the Cox proportional hazard model. In addition, immunohistochemistry (IHC) staining was performed to evaluate the predictive value of selected indicators in the prognosis of surgically resected SCLC patients. In the study, 177 SCLC patients undergoing surgical resection were ultimately included. Both univariate and multivariate Cox analysis revealed that incomplete postoperative adjuvant therapy emerged as an independent risk factor for adverse prognosis (p < 0.001, HR 2.96). Survival analysis revealed significantly superior survival among pN0-1 patients compared to pN2 patients (p < 0.0001). No significant difference in postoperative survival was observed between pN1 and pN0 patients (p = 0.062). Patients with postoperative stable disease (SD) exhibited lower levels of tumor inflammatory cells (TIC) (p = 0.0047) and IFN-γ expression in both area and intensity (p < 0.0001 and 0.0091, respectively) compared to those with postoperative progressive disease (PD). Conversely, patients with postoperative SD showed elevated levels of stromal inflammatory cells (SIC) (p = 0.0453) and increased counts of CD3+ and CD8+ cells (p = 0.0262 and 0.0330, respectively). Survival analysis indicated that high levels of SIC, along with low levels of IFN-γ+ cell area within tumor tissue, may correlate positively with improved prognosis in surgically resected SCLC (p = 0.017 and 0.012, respectively). In conclusion, the present study revealed that the patients with pT1-2N1M0 staging were a potential subgroup of SCLC patients who may benefit from surgery. Complete postoperative adjuvant therapy remains an independent factor promoting a better prognosis for SCLC patients undergoing surgical resection. Moreover, CD3, CD8, IFN-γ, TIC, and SIC may serve as potential indicators for predicting the prognosis of surgically resected SCLC.


CD3 Complex , Immunohistochemistry , Interferon-gamma , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lung Neoplasms/mortality , Interferon-gamma/metabolism , Aged , Small Cell Lung Carcinoma/surgery , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , CD8 Antigens/analysis , Adult , Biomarkers, Tumor/analysis , Survival Analysis , Aged, 80 and over , Kaplan-Meier Estimate , Stromal Cells/pathology , Stromal Cells/metabolism
3.
Chem Soc Rev ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721851

Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.

4.
Clin. transl. oncol. (Print) ; 26(4): 1012-1021, Abr. 2024. graf
Article En | IBECS | ID: ibc-VR-64

Purpose: This study aimed to assess the impact of ypT stage and tumor regression grade (TRG) on the long-term prognosis of patients with locally advanced rectal cancer (LARC) stage ypT1-4N0 after neoadjuvant chemoradiotherapy (NCRT). Methods: We retrospectively analyzed 585 patients with histologically diagnosed middle-low LARC (cT3-4 or cN + by pelvic MRI) from 2014 to 2019. All patients underwent NCRT, followed by total mesorectal excision. Disease-free survival (DFS) rates were compared among patients with different ypT stages and TRGs by Kaplan–Meier survival analysis. The chi-square test was used to analyze the relationship between clinicopathological or therapeutic factors and ypT stage. Results: The median follow‐up was 35.8 months (range 2.8–71.8 months). The 3-year DFS was 79.5%. A better 3-year DFS was achieved in patients with a pathologic complete response (94.0% vs. 74.3%, p < 0.001) and those in the ypT0-2 (86.5% vs. 66.6%, p < 0.001), ypN0 (85.0% vs. 60.2%, p < 0.001), and TRG0 + 1 (83.1% vs. 73.0%, p = 0.004) subgroups. A total of 309 patients (52.8%) achieved stage ypT1-4N0 after surgery. Among these patients, the ypT1-2N0 subgroup achieved a significantly higher 3-year DFS than the ypT3-4N0 subgroup (85.4% vs. 72.8%, p = 0.018); in contrast, the 3-year DFS did not significantly differ between the TRG1 and TRG2 + 3 subgroups (79.9% vs. 81.1%, p = 0.833). In the ypT1-2N0 or ypT3-4N0 subgroup, different TRG had no significant effect on failure patterns. Conclusions: For LARC patients with a ypT1-4N0 status after NCRT, ypT stage may be a more effective predictor of long-term prognosis than TRG.(AU)


Humans , Neoadjuvant Therapy , Prognosis , Neoplasm Staging , Treatment Outcome , Colorectal Neoplasms , Retrospective Studies
5.
Science ; 384(6691): 74-81, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38574120

Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.

6.
J Cancer Res Clin Oncol ; 150(4): 176, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575793

PURPOSE: Residual lymph node metastases (RLNM) remained a great concern in the implementation of organ-preserving strategies and led to poor prognosis in locally advanced rectal cancer (LARC). In this study, we aimed to identify the clinicopathological factors correlated with RLNM in LARC patients with ypT0-2 after neoadjuvant chemoradiotherapy (NCRT). METHODS: We retrospectively analyzed 417 patients histologically diagnosed middle-low LARC after NCRT and total mesorectal excision (TME), whose pathological staging was ypT0-2. All patients received pelvic magnetic resonance imaging (MRI) before NCRT. The radiation doses were 50-50.6 Gy for the planning gross tumor volume and 41.8-45 Gy for the planning target volume, respectively. A nomogram for predicting RLNM was constructed using a binary logistic regression. Nomogram performance was assessed by receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA) and clinical impact curve (CIC). RESULTS: After surgery, 191 patients (45.8%) were ypT0, 43 patients (10.3%) were ypT1 and 183 patients (43.9%) were ypT2, and a total of 49 patients (11.8%) were found the presence of RLNM. Multivariable analyses identified MRI-defined mesorectal fascia (MRF)-positive, high-grade histopathology at biopsy, advanced ypT-category, and the presence of perineural invasion (PNI) as the predictive factors. The nomogram, incorporating all these predictors, showed good discrimination and calibration efficacy, with the areas under the ROC curve of 0.690 (95% CI: 0.610-0.771). Both DCA and CIC demonstrated that this nomogram has good clinical usefulness. CONCLUSION: The nomogram model can predict RLNM in patients with ypT0-2 tumors. It can help select suitable patients for performing organ-preserving strategies after NCRT.


Neoplasms, Second Primary , Rectal Neoplasms , Humans , Neoadjuvant Therapy , Lymphatic Metastasis , Retrospective Studies , Neoplasm Staging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Chemoradiotherapy , Chemoradiotherapy, Adjuvant , Neoplasms, Second Primary/pathology
7.
Nat Commun ; 15(1): 2374, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38490979

Developing fiber electronics presents a practical approach for establishing multi-node distributed networks within the human body, particularly concerning triboelectric fibers. However, realizing fiber electronics for monitoring micro-physiological activities remains challenging due to the intrinsic variability and subtle amplitude of physiological signals, which differ among individuals and scenarios. Here, we propose a technical approach based on a dynamic stability model of sheath-core fibers, integrating a micro-flexure-sensitive fiber enabled by nanofiber buckling and an ion conduction mechanism. This scheme enhances the accuracy of the signal transmission process, resulting in improved sensitivity (detectable signal at ultra-low curvature of 0.1 mm-1; flexure factor >21.8% within a bending range of 10°.) and robustness of fiber under micro flexure. In addition, we also developed a scalable manufacturing process and ensured compatibility with modern weaving techniques. By combining precise micro-curvature detection, micro-flexure-sensitive fibers unlock their full potential for various subtle physiological diagnoses, particularly in monitoring fiber upper limb muscle strength for rehabilitation and training.

8.
Am J Chin Med ; 52(2): 453-469, 2024.
Article En | MEDLINE | ID: mdl-38490806

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Saponins , Triterpenes , Mice , Animals , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Caspase 3/metabolism , Sirtuin 1/metabolism , Gasdermins , Doxorubicin/adverse effects , Caspase 1/metabolism
9.
Phys Med Biol ; 69(9)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38537311

Objective. Conventional transarterial chemoembolization (cTACE) is a common treatment for hepatocellular carcinoma (HCC), often with unsatisfactory local controls. Combining cTACE with radiotherapy shows a promise for unresectable large HCC, with proton therapy preserving healthy liver tissue. However, the proton therapy benefits are subject to the accuracy of tissue relative stopping power (RSP) prediction. The RSP values are typically derived from computed tomography (CT) images using stoichiometric calibration. Lipiodol deposition significantly increases CT numbers in liver regions of post-cTACE. Hence, it is necessary to evaluate the accuracy of RSP in liver regions of post-cTACE.Approach. Liver, water, and iodinated oil samples were prepared. Some liver samples contained iodinated oil. The water equivalent path length (WEPL) of sample was measured through the pullbacks of spread-out Bragg peak (SOBP) depth-dose profiles scanned in a water tank with and without sample in the beam path. Measured RSP values were compared to estimated RSP values derived from the CT number based on the stoichiometric calibration method.Main results. The measured RSP of water was 0.991, confirming measurement system calibration. After removing the RSP contribution from container walls, the pure iodinated oil and liver samples had RSP values of 1.12 and 1.06, while the liver samples mixed with varying oil volumes (5 ml, 10 ml, 15 ml) showed RSP values of 1.05, 1.05 and 1.06. Using the stoichiometric calibration method, pure iodinated oil and liver samples had RSP values of 2.79 and 1.06. Liver samples mixed with iodinated oil (5 ml, 10 ml, 15 ml) had calculated RSP values of 1.21, 1.34, and 1.46. The RSP discrepancy reached 149.1% for pure iodinated oil.Significance.Iodinated oil notably raises CT numbers in liver tissue. However, there is almost no effect on its RSP value. Proton treatment of post-cTACE HCC patients can therefore be overshooting if no proper measures are taken against this specific effect.


Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Water
10.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538744

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
11.
Heliyon ; 10(5): e26774, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38439882

The chemokine 20 (CCL20) is a member of the CC chemokine family and plays a role in tumor immunity and autoimmune disease. This work investigated the value of CCL20 as a serum diagnostic marker for primary hepatocellular carcinoma (HCC). Based on the data of hepatocellular carcinoma patients in the TCGA database, the up-regulated genes encoding secretory proteins were analyzed in each pathological stage, and the candidate marker CCL20 gene was selected. Serum concentrations of CCL20 in patients with primary HCC, benign liver disease, and healthy subjects were analyzed by enzyme-linked immunosorbent assay (ELISA). The ROC curve evaluated the efficacy of CCL20 alone or in combination with AFP in the diagnosis of HCC. It was found the expression of CCL20 in HCC patients was significantly higher than that in the benign liver disease group and healthy controls (P < 0.05); The AUC of ROC curve to distinguish HCC patients from healthy controls was 0.859, the sensitivity was 73.42%, and the specificity was 86.84%. After combination with AFP, the AUC increased to 0.968, the sensitivity was 88.16%, and the specificity was 97.37%. Although CCL20 was increased in the serum of patients with benign liver diseases, combined with AFP, the AUC to distinguish HCC patients from non-HCC cohorts (benign liver disease group and healthy control group) was 0.902, with a sensitivity of 91.67% and a specificity of 75.26%. Collectively, serum CCL20 is closely related to the occurrence of HCC, and detection of serum CCL20 can assist AFP in improving the diagnostic sensitivity of HCC.

12.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Article En | MEDLINE | ID: mdl-38544393

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Glioma , Glutamate-Ammonia Ligase , Magnetic Resonance Imaging , Neovascularization, Pathologic , Animals , Glioma/diagnostic imaging , Glioma/blood supply , Glioma/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Rats , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Male , Cell Line, Tumor
13.
Br J Radiol ; 97(1157): 980-992, 2024 May 07.
Article En | MEDLINE | ID: mdl-38547402

OBJECTIVES: To develop a mapping model between skin surface motion and internal tumour motion and deformation using end-of-exhalation (EOE) and end-of-inhalation (EOI) 3D CT images for tracking lung tumours during respiration. METHODS: Before treatment, skin and tumour surfaces were segmented and reconstructed from the EOE and the EOI 3D CT images. A non-rigid registration algorithm was used to register the EOE skin and tumour surfaces to the EOI, resulting in a displacement vector field that was then used to construct a mapping model. During treatment, the EOE skin surface was registered to the real-time, yielding a real-time skin surface displacement vector field. Using the mapping model generated, the input of a real-time skin surface can be used to calculate the real-time tumour surface. The proposed method was validated with and without simulated noise on 4D CT images from 15 patients at Léon Bérard Cancer Center and the 4D-lung dataset. RESULTS: The average centre position error, dice similarity coefficient (DSC), 95%-Hausdorff distance and mean distance to agreement of the tumour surfaces were 1.29 mm, 0.924, 2.76 mm, and 1.13 mm without simulated noise, respectively. With simulated noise, these values were 1.33 mm, 0.920, 2.79 mm, and 1.15 mm, respectively. CONCLUSIONS: A patient-specific model was proposed and validated that was constructed using only EOE and EOI 3D CT images and real-time skin surface images to predict internal tumour motion and deformation during respiratory motion. ADVANCES IN KNOWLEDGE: The proposed method achieves comparable accuracy to state-of-the-art methods with fewer pre-treatment planning CT images, which holds potential for application in precise image-guided radiation therapy.


Four-Dimensional Computed Tomography , Lung Neoplasms , Skin , Humans , Lung Neoplasms/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Skin/diagnostic imaging , Inhalation , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Exhalation/physiology , Imaging, Three-Dimensional/methods , Respiration , Tomography, X-Ray Computed/methods
14.
J Environ Manage ; 354: 120328, 2024 Mar.
Article En | MEDLINE | ID: mdl-38354615

This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.


Bacillus , Composting , Microbiota , Animals , Bacillus/metabolism , Chickens , Manure/microbiology , Odorants , Ammonia/analysis , Nitrogen/analysis , Bacteria/metabolism , Nutrients , Phosphorus , Potassium , Soil/chemistry
15.
Glob Chall ; 8(2): 2300032, 2024 Feb.
Article En | MEDLINE | ID: mdl-38356680

Flexible thin-film thermoelectric devices (TEDs) can generate electricity from the heat emitted by the human body, which holds great promise for use in energy supply and biomonitoring technologies. The p-type Sb2Te3 hexagon nanosheets are prepared by the hydrothermal synthesis method and compounded with Ti3C2Tx to make composite films, and the results show that the Ti3C2Tx content has a significant impact on the thermoelectric properties of the composite films. When the Ti3C2Tx content is 2 wt%, the power factor of the composite film reaches ≈59 µW m-1 K-2. Due to the outstanding electrical conductivity, high specific surface area, and excellent flexibility of Ti3C2Tx, the composite films also exhibit excellent thermoelectric and mechanical properties. Moreover, the small addition of Ti3C2Tx has a negligible effect on the phase composition of Sb2Te3 films. The TED consists of seven legs with an output voltage of 45 mV at ΔT = 30 K. The potential of highly flexible thin film TEDs for wearable energy collecting and sensing is great.

16.
BMC Med Imaging ; 24(1): 45, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360550

BACKGROUND: Tumor mutational burden (TMB) is one of the most significant predictive biomarkers of immunotherapy efficacy in non-small cell lung cancer (NSCLC). Radiomics allows high-throughput extraction and analysis of advanced and quantitative medical imaging features. This study develops and validates a radiomic model for predicting TMB level and the response to immunotherapy based on CT features in NSCLC. METHOD: Pre-operative chest CT images of 127 patients with NSCLC were retrospectively studied. The 3D-Slicer software was used to outline the region of interest and extract features from the CT images. Radiomics prediction model was constructed by LASSO and multiple logistic regression in a training dataset. The model was validated by receiver operating characteristic (ROC) curves and calibration curves using external datasets. Decision curve analysis was used to assess the value of the model for clinical application. RESULTS: A total of 1037 radiomic features were extracted from the CT images of NSCLC patients from TCGA. LASSO regression selected three radiomics features (Flatness, Autocorrelation and Minimum), which were associated with TMB level in NSCLC. A TMB prediction model consisting of 3 radiomic features was constructed by multiple logistic regression. The area under the curve (AUC) value in the TCGA training dataset was 0.816 (95% CI: 0.7109-0.9203) for predicting TMB level in NSCLC. The AUC value in external validation dataset I was 0.775 (95% CI: 0.5528-0.9972) for predicting TMB level in NSCLC, and the AUC value in external validation dataset II was 0.762 (95% CI: 0.5669-0.9569) for predicting the efficacy of immunotherapy in NSCLC. CONCLUSION: The model based on CT radiomic features helps to achieve cost effective improvement in TMB classification and precise immunotherapy treatment of NSCLC patients.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Retrospective Studies , Radiomics , Tomography, X-Ray Computed/methods , Biomarkers, Tumor , Immunotherapy
17.
Med Image Anal ; 93: 103064, 2024 Apr.
Article En | MEDLINE | ID: mdl-38219500

With the emergence of multimodal electronic health records, the evidence for diseases, events, or findings may be present across multiple modalities ranging from clinical to imaging and genomic data. Developing effective patient-tailored therapeutic guidance and outcome prediction will require fusing evidence across these modalities. Developing general-purpose frameworks capable of modeling fine-grained and multi-faceted complex interactions, both within and across modalities is an important open problem in multimodal fusion. Generalized multimodal fusion is extremely challenging as evidence for outcomes may not be uniform across all modalities, not all modality features may be relevant, or not all modalities may be present for all patients, due to which simple methods of early, late, or intermediate fusion may be inadequate. In this paper, we present a novel approach that uses the machinery of multiplexed graphs for fusion. This allows for modalities to be represented through their targeted encodings. We model their relationship between explicitly via multiplexed graphs derived from salient features in a combined latent space. We then derive a new graph neural network for multiplex graphs for task-informed reasoning. We compare our framework against several state-of-the-art approaches for multi-graph reasoning and multimodal fusion. As a sanity check on the neural network design, we evaluate the multiplexed GNN on two popular benchmark datasets, namely the AIFB and the MUTAG dataset against several state-of-the-art multi-relational GNNs for reasoning. Second, we evaluate our multiplexed framework against several state-of-the-art multimodal fusion frameworks on two large clinical datasets for two separate applications. The first is the NIH-TB portals dataset for treatment outcome prediction in Tuberculosis, and the second is the ABIDE dataset for Autism Spectrum Disorder classification. Through rigorous experimental evaluation, we demonstrate that the multiplexed GNN provides robust performance improvements in all of these diverse applications.


Autism Spectrum Disorder , Humans , Prognosis , Benchmarking , Neural Networks, Computer
18.
Sci Adv ; 10(2): eadk4620, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38198540

Collecting energy from the ubiquitous water cycle has emerged as a promising technology for power generation. Here, we have developed a sustainable moisture absorption-evaporation cycling fabric (Mac-fabric). On the basis of the cycling unidirectional moisture conduction in the fabric and charge separation induced by the negative charge channel, sustainable constant voltage power generation can be achieved. A single Mac-fabric can achieve a high power output of 0.144 W/m2 (5.76 × 102 W/m3) at 40% relative humidity (RH) and 20°C. By assembling 500 series and 300 parallel units of Mac-fabrics, a large-scale demo achieves 350 V of series voltage and 33.76 mA of parallel current at 25% RH and 20°C. Thousands of Mac-fabric units are sewn into a tent to directly power commercial electronic products such as mobile phones in outdoor environments. The lightweight (300 g/m2) and soft characteristics of the Mac-fabric make it ideal for large-area integration and energy collection in real circumstances.

19.
BMC Health Serv Res ; 24(1): 124, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38263000

BACKGROUND: Hospital chief financial officer (CFO) contributes to improving health system performance. However, how to become an excellent hospital CFO has rarely been considered from a holistic perspective. This paper aims to identify competencies required by hospital CFO to fulfil the position's responsibilities and explore effective implementation pathways to generate high performance and improve healthcare service. METHODS: We conducted 61 semi-structured interviews with individuals in key leadership positions in China's hospitals and researchers focusing on healthcare system management to identify core competencies necessary for hospital CFO. Interviews were analysed through a multi-stage review process and modified via expert vetting using a national panel of 23 professors. Subsequently, interviews were conducted with 32 hospital CFOs from 14 provinces throughout September 2021 to May 2022. We scored the performance of 32 hospital CFOs in various aspects of competency and used the fuzzy-set qualitative comparative analysis to explore the competency configurations of excellent CFOs. RESULTS: We identify seven core competencies necessary for a hospital CFO to fulfil management practices, including personal morality, resource management, strategy management, learning ability, negotiating skill, leadership skill, and financial management. The findings indicate that a single competency factor is not a necessary condition to become an excellent hospital CFO. The results of qualitative comparative analysis then make it possible to propose four configurational paths, namely, supportive, interpersonal, all-around development, and technical, to become an excellent hospital CFO and achieve effective managerial performance. CONCLUSIONS: The responsibilities of hospital CFOs are complex and varied, hence, a better understanding of competencies required by CFO is essential to implement their responsibilities effectively. The identification in this study of the four effective implementation pathways to becoming an excellent hospital CFO enriches the literature on hospital management and provides implications for China's hospitals and their CFOs.


Educational Personnel , Hospitals, Public , Humans , Health Facilities , China , Leadership
20.
ACS Nano ; 18(5): 4008-4018, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38277229

Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.


Electrons , Hydrogels , Nitrites , Transition Elements , Electric Conductivity , Electricity , Ions
...